3.3.57 \(\int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [257]

3.3.57.1 Optimal result
3.3.57.2 Mathematica [F]
3.3.57.3 Rubi [A] (verified)
3.3.57.4 Maple [C] (warning: unable to verify)
3.3.57.5 Fricas [C] (verification not implemented)
3.3.57.6 Sympy [F]
3.3.57.7 Maxima [F]
3.3.57.8 Giac [F]
3.3.57.9 Mupad [F(-1)]

3.3.57.1 Optimal result

Integrand size = 25, antiderivative size = 330 \[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {2 (a-b) E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right ) \left (a+b-a \sin ^2(e+f x)\right )}{3 b^2 f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {(a-2 b) \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right ) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{3 b f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {2 (a-b) \sec (e+f x) \left (a+b-a \sin ^2(e+f x)\right ) \tan (e+f x)}{3 b^2 f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}+\frac {\sec ^3(e+f x) \left (a+b-a \sin ^2(e+f x)\right ) \tan (e+f x)}{3 b f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \]

output
2/3*(a-b)*EllipticE(sin(f*x+e),(a/(a+b))^(1/2))*(a+b-a*sin(f*x+e)^2)/b^2/f 
/(cos(f*x+e)^2)^(1/2)/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)/(1-a*sin(f 
*x+e)^2/(a+b))^(1/2)-1/3*(a-2*b)*EllipticF(sin(f*x+e),(a/(a+b))^(1/2))*(1- 
a*sin(f*x+e)^2/(a+b))^(1/2)/b/f/(cos(f*x+e)^2)^(1/2)/(sec(f*x+e)^2*(a+b-a* 
sin(f*x+e)^2))^(1/2)-2/3*(a-b)*sec(f*x+e)*(a+b-a*sin(f*x+e)^2)*tan(f*x+e)/ 
b^2/f/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)+1/3*sec(f*x+e)^3*(a+b-a*si 
n(f*x+e)^2)*tan(f*x+e)/b/f/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)
 
3.3.57.2 Mathematica [F]

\[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx \]

input
Integrate[Sec[e + f*x]^5/Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
Integrate[Sec[e + f*x]^5/Sqrt[a + b*Sec[e + f*x]^2], x]
 
3.3.57.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 315, normalized size of antiderivative = 0.95, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3042, 4636, 2057, 2058, 316, 25, 402, 25, 27, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (e+f x)^5}{\sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4636

\(\displaystyle \frac {\int \frac {1}{\left (1-\sin ^2(e+f x)\right )^3 \sqrt {a+\frac {b}{1-\sin ^2(e+f x)}}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 2057

\(\displaystyle \frac {\int \frac {1}{\left (1-\sin ^2(e+f x)\right )^3 \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \int \frac {1}{\left (1-\sin ^2(e+f x)\right )^{5/2} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\int -\frac {a \sin ^2(e+f x)+a-2 b}{\left (1-\sin ^2(e+f x)\right )^{3/2} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{3 b}+\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\int \frac {a \sin ^2(e+f x)+a-2 b}{\left (1-\sin ^2(e+f x)\right )^{3/2} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {\int -\frac {a \left (-2 (a-b) \sin ^2(e+f x)+2 a-b\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{b}+\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {\int \frac {a \left (-2 (a-b) \sin ^2(e+f x)+2 a-b\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {a \int \frac {-2 (a-b) \sin ^2(e+f x)+2 a-b}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {a \left (\frac {2 (a-b) \int \frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a}-\frac {b (a-2 b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{a}\right )}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {a \left (\frac {2 (a-b) \int \frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a}-\frac {b (a-2 b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}d\sin (e+f x)}{a \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {a \left (\frac {2 (a-b) \int \frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a}-\frac {b (a-2 b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{a \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {a \left (\frac {2 (a-b) \sqrt {-a \sin ^2(e+f x)+a+b} \int \frac {\sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {b (a-2 b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{a \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{3 b \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {\frac {2 (a-b) \sin (e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}}{b \sqrt {1-\sin ^2(e+f x)}}-\frac {a \left (\frac {2 (a-b) \sqrt {-a \sin ^2(e+f x)+a+b} E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right )}{a \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {b (a-2 b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{a \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{b}}{3 b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

input
Int[Sec[e + f*x]^5/Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
(Sqrt[a + b - a*Sin[e + f*x]^2]*((Sin[e + f*x]*Sqrt[a + b - a*Sin[e + f*x] 
^2])/(3*b*(1 - Sin[e + f*x]^2)^(3/2)) - ((2*(a - b)*Sin[e + f*x]*Sqrt[a + 
b - a*Sin[e + f*x]^2])/(b*Sqrt[1 - Sin[e + f*x]^2]) - (a*((2*(a - b)*Ellip 
ticE[ArcSin[Sin[e + f*x]], a/(a + b)]*Sqrt[a + b - a*Sin[e + f*x]^2])/(a*S 
qrt[1 - (a*Sin[e + f*x]^2)/(a + b)]) - ((a - 2*b)*b*EllipticF[ArcSin[Sin[e 
 + f*x]], a/(a + b)]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])/(a*Sqrt[a + b - 
 a*Sin[e + f*x]^2])))/b)/(3*b)))/(f*Sqrt[1 - Sin[e + f*x]^2]*Sqrt[(a + b - 
 a*Sin[e + f*x]^2)/(1 - Sin[e + f*x]^2)])
 

3.3.57.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 2057
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u* 
((b + a*c + a*d*x^n)/(c + d*x^n))^p, x] /; FreeQ[{a, b, c, d, n, p}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4636
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f 
 Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2), x], x 
, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] 
 && IntegerQ[n/2] &&  !IntegerQ[p]
 
3.3.57.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 12.32 (sec) , antiderivative size = 6274, normalized size of antiderivative = 19.01

method result size
default \(\text {Expression too large to display}\) \(6274\)

input
int(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.3.57.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.15 (sec) , antiderivative size = 784, normalized size of antiderivative = 2.38 \[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {{\left (2 \, {\left (-i \, a^{2} + i \, a b\right )} \sqrt {a} \sqrt {\frac {a b + b^{2}}{a^{2}}} \cos \left (f x + e\right )^{2} - {\left (-i \, a^{2} - i \, a b + 2 i \, b^{2}\right )} \sqrt {a} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} E(\arcsin \left (\sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {a^{2} + 8 \, a b + 8 \, b^{2} + 4 \, {\left (a^{2} + 2 \, a b\right )} \sqrt {\frac {a b + b^{2}}{a^{2}}}}{a^{2}}) + {\left (2 \, {\left (i \, a^{2} - i \, a b\right )} \sqrt {a} \sqrt {\frac {a b + b^{2}}{a^{2}}} \cos \left (f x + e\right )^{2} - {\left (i \, a^{2} + i \, a b - 2 i \, b^{2}\right )} \sqrt {a} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} E(\arcsin \left (\sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {a^{2} + 8 \, a b + 8 \, b^{2} + 4 \, {\left (a^{2} + 2 \, a b\right )} \sqrt {\frac {a b + b^{2}}{a^{2}}}}{a^{2}}) - {\left (2 i \, a^{\frac {3}{2}} b \sqrt {\frac {a b + b^{2}}{a^{2}}} \cos \left (f x + e\right )^{2} + {\left (2 i \, a^{2} + 3 i \, a b - 2 i \, b^{2}\right )} \sqrt {a} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} F(\arcsin \left (\sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {a^{2} + 8 \, a b + 8 \, b^{2} + 4 \, {\left (a^{2} + 2 \, a b\right )} \sqrt {\frac {a b + b^{2}}{a^{2}}}}{a^{2}}) - {\left (-2 i \, a^{\frac {3}{2}} b \sqrt {\frac {a b + b^{2}}{a^{2}}} \cos \left (f x + e\right )^{2} + {\left (-2 i \, a^{2} - 3 i \, a b + 2 i \, b^{2}\right )} \sqrt {a} \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} F(\arcsin \left (\sqrt {\frac {2 \, a \sqrt {\frac {a b + b^{2}}{a^{2}}} - a - 2 \, b}{a}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {a^{2} + 8 \, a b + 8 \, b^{2} + 4 \, {\left (a^{2} + 2 \, a b\right )} \sqrt {\frac {a b + b^{2}}{a^{2}}}}{a^{2}}) - {\left (2 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{2} - a b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{3 \, a b^{2} f \cos \left (f x + e\right )^{2}} \]

input
integrate(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
1/3*((2*(-I*a^2 + I*a*b)*sqrt(a)*sqrt((a*b + b^2)/a^2)*cos(f*x + e)^2 - (- 
I*a^2 - I*a*b + 2*I*b^2)*sqrt(a)*cos(f*x + e)^2)*sqrt((2*a*sqrt((a*b + b^2 
)/a^2) - a - 2*b)/a)*elliptic_e(arcsin(sqrt((2*a*sqrt((a*b + b^2)/a^2) - a 
 - 2*b)/a)*(cos(f*x + e) + I*sin(f*x + e))), (a^2 + 8*a*b + 8*b^2 + 4*(a^2 
 + 2*a*b)*sqrt((a*b + b^2)/a^2))/a^2) + (2*(I*a^2 - I*a*b)*sqrt(a)*sqrt((a 
*b + b^2)/a^2)*cos(f*x + e)^2 - (I*a^2 + I*a*b - 2*I*b^2)*sqrt(a)*cos(f*x 
+ e)^2)*sqrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*elliptic_e(arcsin(sq 
rt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*(cos(f*x + e) - I*sin(f*x + e) 
)), (a^2 + 8*a*b + 8*b^2 + 4*(a^2 + 2*a*b)*sqrt((a*b + b^2)/a^2))/a^2) - ( 
2*I*a^(3/2)*b*sqrt((a*b + b^2)/a^2)*cos(f*x + e)^2 + (2*I*a^2 + 3*I*a*b - 
2*I*b^2)*sqrt(a)*cos(f*x + e)^2)*sqrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b 
)/a)*elliptic_f(arcsin(sqrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*(cos( 
f*x + e) + I*sin(f*x + e))), (a^2 + 8*a*b + 8*b^2 + 4*(a^2 + 2*a*b)*sqrt(( 
a*b + b^2)/a^2))/a^2) - (-2*I*a^(3/2)*b*sqrt((a*b + b^2)/a^2)*cos(f*x + e) 
^2 + (-2*I*a^2 - 3*I*a*b + 2*I*b^2)*sqrt(a)*cos(f*x + e)^2)*sqrt((2*a*sqrt 
((a*b + b^2)/a^2) - a - 2*b)/a)*elliptic_f(arcsin(sqrt((2*a*sqrt((a*b + b^ 
2)/a^2) - a - 2*b)/a)*(cos(f*x + e) - I*sin(f*x + e))), (a^2 + 8*a*b + 8*b 
^2 + 4*(a^2 + 2*a*b)*sqrt((a*b + b^2)/a^2))/a^2) - (2*(a^2 - a*b)*cos(f*x 
+ e)^2 - a*b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a 
*b^2*f*cos(f*x + e)^2)
 
3.3.57.6 Sympy [F]

\[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sec ^{5}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

input
integrate(sec(f*x+e)**5/(a+b*sec(f*x+e)**2)**(1/2),x)
 
output
Integral(sec(e + f*x)**5/sqrt(a + b*sec(e + f*x)**2), x)
 
3.3.57.7 Maxima [F]

\[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{5}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sec(f*x + e)^5/sqrt(b*sec(f*x + e)^2 + a), x)
 
3.3.57.8 Giac [F]

\[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{5}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^5(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {1}{{\cos \left (e+f\,x\right )}^5\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

input
int(1/(cos(e + f*x)^5*(a + b/cos(e + f*x)^2)^(1/2)),x)
 
output
int(1/(cos(e + f*x)^5*(a + b/cos(e + f*x)^2)^(1/2)), x)